Тяжелые металлы в пищевой продукции. Тяжелые металлы как загрязнители продуктов питания и кормов

В России насчитывается более 130 биогеохимических провинций, что накладывает свой отпечаток на элементный состав сельскохозяйственной продукции, получаемой в их пределах. Не меньшее воздействие на ее качество оказывает техногенное поступление химических элементов в окружающую среду. Допустимое количество тяжелых металлов, которое человек может потреблять с продуктами питания без риска заболевания, колеблется в зависимости от вида металла свинец - 3, кадмий - 0,4-0,5, ртуть - 0,3 мг в неделю. И хотя эти уровни условны, тем не менее, они служат основой для контроля содержания в продуктах питания. Поступившие в организм человека тяжелые металлы выводятся крайне медленно, они способны к накоплению главным образом в почках и печени.

Для предотвращения заболевания человека необходимо устранить его причины, среди которых могут быть и загрязненные тяжелыми металлами продукты питания, т.е. необходима экологически безопасная продукция.

В настоящее время в районах, где расположены крупные промышленные предприятия, а также интенсивного использования осадков сточных вод в сельскохозяйственном производстве в почвах накапливаются избыточные количества тяжелых металлов. Однако эти территории широко используются для производства продукции как растениеводческой, так и животноводческой.

Анализ овощеводческой продукции, продаваемой на рынках г. Серпухова (Московской обл.), показал, что в зеленных культурах, редисе, картофеле, свекле столовой и моркови содержание свинца и кадмия превышает их ПДК в 18-25 раз. Это является следствием того, что жители г. Серпухова при выращивании овощных культур и картофеля используют осадки коммунальных стоков города. Еще меньше предельно допустимое содержание ртути: не более 0,05 мг/кг.

Таблица 3 Верхняя пороговая концентрация тяжелых металлов в сухом веществе корма [Ковальский и др., 1971]

Во многих странах мира разработаны национальные нормативы допустимых остаточных количества (ДОК). Например, в Германии ДОК кадмия в овощах в 3 раза выше, чем в России. В то же время ДОК кадмия в овощах, принятое в России и равное 0,03 мг/кг сырой массы, достигается при техногенном загрязнении почв очень быстро. Так, содержание ртути в российском сахаре меняется в 3 раза, тогда как в рыбе в 1300 раз. Колебания содержания свинца составляет 2-165 раз, кадмия - 2-450 раз, хрома - 3-16 раз, меди - 3_121 раз, цинка - 3-30 раз и никеля - 2-30 раз. Столь широкий размах изменений содержания определяется видом самой продукции, условиями ее производства (технология процесса получения продукции), внешними факторами состояния окружающей среды, степенью чистоты исходных компонентов для ее производства.

Таблица 4 Допустимые остаточные количества тяжелых металлов в пищевых продуктах, мг/кг [Найчитейн и др., 1987]

Незначительные колебания содержания тяжелых металлов характерно для целого ряда продуктов: сахар, пиво и орехи. Малые колебания содержания тяжелых металлов в орехах. Высокое содержание свинца, кадмия, хрома и никеля в продукции связано в первую очередь с ее производством вблизи промышленных предприятий и автомобильных дорог.

Допустимое количество тяжелых металлов, которое человек может потреблять с продуктами питания без риска заболевания, колеблется в зависимости от вида металла свинец - 3, кадмий - 0,4-0,5, ртуть - 0,3 мг в неделю. И хотя эти уровни условны, тем не менее, они служат основой для контроля содержания в продуктах питания.

Наибольшей аккумуляцией элементов отличались столовая свекла и картофель. Сорта картофеля имеют существенные различия в аккумуляции кадмия и в особенности свинца. Минимальным накоплением кадмия в клубнях характеризуются сорта: Брянский ранний и Броницкий, а максимальным - Невский-1. Минимальное количество свинца накапливали сорта: Брянский ранний, Броницкий, Резерв-2, Пригожий, Институтский, максимальное - Скайдра, Невский-1, Посвит-2, Свитанок-3.

Среди продуктов растительного происхождения, содержащих кобальт следует выделить: злаки, бобовые, картофель, капусту, перец красный, петрушку, редьку, салат, свеклу, зеленый лук, землянику, ежевику, малину, смородину, фундук (лесной орех), фруктовые соки (виноградный, земляничный, вишневый, мандариновый и апельсиновый).

Больше всего меди содержится в растениях лука, петрушки, редьки и кабачков. Значительно меньше содержится меди в продукции растений кукурузы и картофеля. Высоким содержанием меди отличаются соки: томатный; абрикосовый и морковный.

В значительных количествах цинк находится в следующих продуктах фасоли, горохе, луке репчатом и зеленом, огурцах, чесноке, кабачках. Немного меньше его в картофеле, моркови, петрушке, редьке, томатах укропе, землянике, крыжовнике, малине. Очень много цинка в злаках, белых грибах и больше всего в семенах конопли. В незначительных количествах он содержится в баклажанах, арбузе, перце красном, хрене, шпинате, абрикосе, сливе, клюкве, черешне, печени, почках, говядине, сырых яйцах. При хранении пищевых продуктов в цинковой посуде могут накапливаться ядовитые соединения цинка - хлориды, сульфаты.

К растениям, которые накапливают большие количества марганца (т.е. марганофиллы), относятся: горох, фасоль, укроп, петрушка, свекла, хрен, шпинат, щавель, морковь, лук, чеснок, грибы, виноград, земляника, клюква, крыжовник, малина, смородина, яблони, груши. Овощные и фруктовые соки также отличаются по содержанию тяжелых металлов.

Проблема нитратов в продуктах питания

Овощи нам необходимы, без них не обойтись. Но попадающие на наш стол капуста, картошка, редис или огурцы, как правило, содержат азотнокислые соли - нитраты. В желудочно-кишечном тракте они превращаются в соли азотистой кислоты - нитриты, которые отравляют организм. Это выражается в нарушении поведенческих реакций, снижении работоспособности, головокружении, потере сознания. Если же доза очень велика - исход может быть и летальным.

Человек относительно легко переносит дозу в 150-200 миллиграммов нитратов в день, 500 - предельно допустимая доза, 600 - токсичная для взрослых, а для грудного ребенка - 10 миллиграммов. Но волей-неволей мы потребляем в день гораздо больше этих солей, так как овощи способны накапливать их в очень широких пределах.

В естественных условиях, например, в лесу, содержание нитратов в растениях небольшое - они почти полностью переходят в органические соединения.

Еще в 1984 году было установлено предельно допустимое содержание азота нитратов в миллиграммах на килограмм сырой массы овощей. Так, в капусте белокочанной содержание этих солей не должно превышать 300, в томатах - 60, в огурцах - 150, в столовой свекле - 1400, в дынях и арбузах - 45 миллиграммов на килограмм. По данным санэпидстанции, эти нормы постоянно превышаются.

В пюре моркови содержание нитратов доходило до 600 мг/кг, а тыквенном - до 1000 (при предельно допустимых 15).

Зафиксировано, что содержание нитратов различно не только в отдельных культурах, но и в сортах. Огурцы сорта Апрельский при прочих равных условиях накапливают нитратов в 3 раза больше, чем сорт Московский тепличный. Морковь Нантская содержит в 2 раза больше неорганического азота, чем Шантанэ. У зеленных овощей наибольшее количество нитратов находится в стеблях и черешках листьев, поскольку именно сюда идет основной транспорт солей азота. Установлено, что неорганический азот практически отсутствует в зерне злаковых культур и в основном сосредоточен в вегетативных органах (лист, стебель).

У столовой свеклы, моркови, редиса огурца необходимо отрезать верхнюю и нижнюю части корнеплода. Содержание нитратов в картофеле - 10_150, огурцы - 20-100, свекла - 10-500 мг/кг. Зеленные овощи накапливают большое количество нитратов. У них наибольшее количество нитратов находится в стеблях и черешках листьев, поскольку именно сюда идет основной транспорт солей азота. Ревень до 500 мг/кг, петрушка - 430, редька - 400, кресс - салат от 300 до 1100 мг/кг, салат от 100-600 мг/кг, в дынях и арбузах 110-130 мг/кг.

Существенное влияние на количество нитратов в продуктах питания оказывает технология их приготовления. При грамотной чистке, вымачивании и варке может теряться от 20 до 40 % вредных солей. Например, если картофель замочить на сутки в 1-процентном растворе поваренной соли или аскорбиновой кислоты, то уровень нитратов в клубнях снизится почти на 90 %.

Во многих странах Чехии, Германии, США, Франции и др. приняты законы, ограничивающие уровень нитратов и нитритов не только в овощах, но и в консервах, мясных и молочных изделиях.

В Голландии, Бельгии, и других странах овощи в магазины поступают только с паспортом - в нем точное содержание нитратов. Если покупатель желает убедиться в правильности цифр, к его услугам специальные индикаторные бумажки. Выжав на них каплю сока из овощей, по цвету можно убедиться в правильности цифр.

Различные марки пива содержат неодинаковое количество тяжелых металлов. Их содержание, кроме кадмия, находится в пределах допустимого уровня. Содержание же кадмия превышает ПДК: в 2 раза в пиве марки "Балтика № 1", в 3 раза - марки "Holsten, Bavaria" и в 4 раза - марки "Московское". Пиво марки "Московское" содержит более высокое количество кобальта, никеля и хрома.

Наиболее существенное изменение содержания ртути в рыбе и в рыбных продуктах, что связано с загрязнением Мирового океана этим элементом. То же самое наблюдается и в отношении свинца, кадмия и хрома.

Аккумуляция тяжелых металлов тканями рыб создает угрозу отравления человека через рыбные продукты, употребляемые в пищу. Прослеживается неравномерное накопление тяжелых металлов как различными органами одного вида рыб, так и особями разных видов, относящихся к различным уровням трофической цепи.

В печени густеры содержание меди превышало ДОК в 1,3 раза, а в печени леща, чехони и белоглазки - в 3,1; 5,5; 1,3 раза, соответственно. Икра густеры и белоглазки также содержала значительные количества меди. Наибольшее количество цинка обнаружено в икре густеры, плотвы и белоглазки (превышение ДОК в 2-3,5 раза). В летний период отмечается повышение содержание в рыбе - тяжелых металлов. Содержание ртути в рыбе природных водоемов колеблется в пределах 10-27 мг/кг. Высокое количество ртути характерно для хищных пород рыб: окунь, щука, судак. ПДК ртути для рыб равна - 0,5 мг/кг. В настоящее время более 80 % рыб содержат ртути от 0,5 до 2 мг/кг и 20 % - от 0,1 до 0,5 мг/кг.

Наибольшее количество свинца содержится в табаке сигарет "Прима" и "Пегас" а минимальное - в табаке "Marlboro". Сигареты "Пегас" содержат наибольшее количество кадмия, хрома и кобальта и минимальное количество марганца. Минимальное содержание кадмия и хрома характерно для табака сигарет "Ява золотая". Наименьшее количество кобальта находится в табаке сигарет "Salem". Наименьшее содержание марганца характерно для табака сигарет "Пегас", а максимальное - для "Marlboro".

Курение как постоянно действующий фактор вносит свою лепту в общее загрязнение организма чужеродными веществами, которые играют важную экологическую роль в развитии патологии сердечно-сосудистой системы человека.

Табак потребляет и аккумулирует в себе значительные количества кадмия и ртути. Содержание ртути в сухих листьях табака на порядок, а кадмия на три порядка выше средних значений их величины для биомассы наземной растительности. Поэтому каждая затяжка дымом содержит помимо других веществ (никотин, нитраты, окись углерода), также и кадмий. В одной сигарете его сдержится от 1,2 до 2,5 мкг и до 0,25 мкг свинца. Из этого количества в легкие попадает 0,1-0,2 мкг кадмия, а остальное рассеивается вместе с дымом и пеплом.

Мировое производстве табака составляет 5,7 млн. т в год. Одна сигарета - это 1 г табака. При выкуривании всех сигарет мира выделяется от 5,7 до 11,4 т кадмия, т.е. такое же количество, как при 3-4 средней силы вулканических извержениях.

Некоторые металлы необходимы для нормального протекания физиологических процессов в организме человека. Однако при повышенных концентрациях они токсичны. Соединения металлов, попадая в организм, взаимодействуют с рядом ферментов, подавляя их активность.

Широкое токсическое воздействие проявляют тяжелые металлы. Это воздействие может быть широким (свинец) или более ограниченным (кадмий). В отличие от органических загрязняющих веществ, металлы не разлагаются в организме, а способны лишь к перераспределению. Живые организмы имеют механизмы нейтрализации тяжелых металлов.

Загрязнение пищевых продуктов наблюдается, когда сельскохозяйственные культуры выращиваются на полях вблизи промышленных предприятий или загрязнены городскими отходами. Медь и цинк концентрируются преимущественно в корнях, кадмий -- в листьях.

Hg (ртуть): соединения ртути применяются в качестве фунгицидов (например, для протравливания посевного материала), используются при производстве бумажной массы, служат катализатором при синтезе пластмасс. Ртуть используется в электротехнической и электрохимической промышленности. Источниками ртути служат ртутные батареи, красители, люминесцентные лампы. Вместе с отходами производства ртуть в металлической или связанной форме попадает в промышленные стоки и воздух. В водных системах ртуть с помощью микроорганизмов может превращаться из относительно малотоксичных неорганических соединений в высокотоксичные органические (метилртуть (CH3)Hg). Загрязненной оказывается, главным образом, рыба.

Метилртуть может стимулировать изменения в нормальном развитии мозга детей, а в более высоких дозах вызывать неврологические изменения у взрослых. При хроническом отравлении развивается микромеркуриализм -- заболевание, которое проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенности в себе, раздражительности, головных болях, дрожании конечностей.

Руководством Codex CAC/GL 7 для любых видов рыбы, поступающих в международную торговлю (кроме хищной), установлен уровень 0,5 мг/кг, для хищной рыбы -- (акула, меч-рыба, тунец) -- 1 мг/кг.

Pb (свинец): свинец применяется для производства аккумуляторных батарей, тетраэтилсвинца, для покрытия кабелей, в производстве хрусталя, эмалей, замазок, лаков, спичек, пиротехнических изделий, пластмасс и т. п. Такая активная деятельность человека привела к нарушениям в природном цикле свинца.

Основной источник поступления свинца в организм -- растительная пища.

Попадая в клетки, свинец (как и многие другие тяжелые металлы) дезактивирует ферменты. Реакция идет по сульфгидрильным группам белковых составляющих ферментов с образованием --S--Pb--S--.

Свинец замедляет познавательное и интеллектуальное развитие детей, увеличивает кровяное давление и вызывает сердечнососудистые болезни взрослых. Изменения нервной системы проявляются в головной боли, головокружении, повышенной утомляемости, раздражительности, в нарушениях сна, ухудшении памяти, мышечной гипотонии, потливости. Свинец может заменять кальций в костях, становясь постоянным источником отравления. Органические соединения свинца еще более токсичны.

В течение прошлого десятилетия уровни свинца в пище значительно снизились благодаря сокращению его эмиссии автомобилями. Высокоэффективным связующим для попавшего в организм свинца оказался пектин, содержащийся в кожуре апельсинов. Cd (кадмий): кадмий активнее свинца, и отнесен ВОЗ к веществам, наиболее опасным для здоровья человека. Он находит все большее применение в гальванике, производстве полимеров, пигментов, серебряно-кадмиевых аккумуляторов и батареек. На территориях, вовлеченных в хозяйственную деятельность человека, кадмий накапливается в различных организмах и с возрастом способен увеличиваться до критических для жизни величин. Отличительные свойства кадмия -- высокая летучесть и способность легко проникать в растения и живые организмы за счет образования ковалентных связей с органическими молекулами белков. В наибольшей мере аккумулирует кадмий из почвы растение табака.

Кадмий по химическим свойствам родственен цинку, может замещать цинк в ряде биохимических процессов в организме, нарушая их (например, выступать как псевдоактиватор белков). Смертельной для человека может быть доза в 30--40 мг. Особенностью кадмия является большое время удержания: за 1 сутки из организма выводится около 0,1% полученной дозы.

Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (накопление в почках особенно интенсивно). Для курильщиков или занятых на производстве с использованием кадмия добавляется эмфизема легких.

Не исключено, что это канцероген для человека. Содержание кадмия должно быть уменьшено, в первую очередь, в диетических продуктах. Максимальные уровни должны быть установлены настолько низкими как это разумно достижимо.

Предельно допустимые концентрации тяжелых металлов и мышьяка в продовольственном сырье и пищевых продуктах.

химические

В настоящее время все чаще применяется термин токсичные элементы (тяжелые металлы более неудачное название, поэтому употребляется реже). Под этим термином в пищевой отрасли подразумевают ряд химических элементов, которые присутствуют в пищевых продуктах и оказывают неблагоприятное воздействие на здоровье человека. Прежде всего, это такие элементы, как свинец, ртуть, кадмий и мышьяк. Они обладают высокой токсичностью, способностью накапливаться в организме при длительном поступлении с пищевыми продуктами и обусловливать отдаленные последствия – мутагенные и канцерогенные (для мышьяка и свинца).

Для наиболее актуальных токсичных элементов установлены жесткие гигиенические нормативы, выполнение которых стараются отслеживать на этапе сырья. Однако превышение нормативов по токсичным элементам (тяжелым металлам) в одной партии не влечет за собой ее автоматическое уничтожение. На производстве могут поступать и другим образом – если в одной из партий сырья превышено содержание токсичного элемента, то ее смешивают с другой партией, где содержание этого элемента существенно ниже. Таким образом, на выходе получается соответствующий гигиеническому регламенту продукт. Такой подход позволяет предприятию минимизировать свои убытки при соблюдении безопасности пищевой продукции.

Наибольшие проблемы по содержанию токсичных элементов в продовольственном сырье наблюдаются в районах геохимических аномалий, где концентрация токсичных элементов в объектах природной среды значительно выше, чем в других районах. Такие же проблемы возникают в зонах расположения предприятий металлургической, машиностроительной, горнодобывающей, химической промышленностей, вблизи крупных автомагистралей и городов, а также при интенсивном использовании минеральных удобрений и других агрохимикатов.

Степень накопления токсических элементов (тяжелых металлов) в сельскохозяйственной продукции неравномерна. На нее влияют: уровень загрязненности почвы и других объектов природной среды; биологические особенности растений (например, особой способностью аккумулировать кадмий из почвы обладают листовые овощи, свекла и морковь); нерациональное применение минеральных удобрений, пестицидов; геологическая и агрохимическая характеристика почв.

Так, ртуть проникает в растения прямо пропорционально ее концентрации в почве. Исключением являются кислые почвы, в которых ртуть находится в плохо растворимых формах (в отличие от других тяжелых металлов и мышьяка). При концентрации ртути в почве до 2,1 мг/кг, в растениях не может накапливаться опасное для человека количество этого элемента.

Токсичные элементы – один из наиболее часто контролируемых показателей в пищевых продуктах. Их определяют во всех видах сырья и большей части конечных пищевых продуктов. Однако наибольшее содержание и наиболее частое превышение гигиенического норматива наблюдается в пищевых продуктах растительного происхождения (фрукты, овощи, хлеб и хлебобулочные изделия, макаронные изделия, крупы, семечки и пр.). Также они являются первичным звеном накопления токсичных элементов в пищевой цепи.

Это связано с тем, что растения не просто непосредственно контактируют с землей, но и активно всасывают из нее различные вещества, включая токсичные элементы.

В животных накопление токсичных элементов происходит при употреблении ими в пищу соответствующих кормов. Это наблюдается, например, в случае неудачного расположения пастбищ (в местах с повышенным содержанием токсичных элементов) или при использовании приготовленного загрязненного корма.

Отдельное место занимает рыба и морепродукты. Они способны накапливать токсичные элементы в зависимости от степени загрязненности водоемов. Поэтому ловля рыбы, а также сбор морепродуктов нежелателен вблизи крупных городов, в реках, на которых расположены опасные виды производств и пр.

Можно выделить общие черты в механизме токсичности у всех токсичных элементов. Так, наиболее часто они связываются с белками (с сульфгидрильными группами), чем нарушают их функции как переносчиков, ферментов, рецепторов и пр.

Основными сферами избирательной токсичности элементов этой группы являются эпителий почек, печени и кишечника, а также эритроциты и нервные клетки, где наблюдается повышенная концентрация этих веществ.

Клиническая картина отравлений токсичными элементами редко носит специфичный характер, позволяющий определить, чем было вызвано отравление (за исключением острых отравлений, при употреблении значительных количеств токсичных элементов). Преобладают такие симптомы, как общее недомогание, хроническая усталость, различные диспептические явления и пр. Часто наблюдают такие симптомы, как: нефропатия, токсическая дистрофия печени, выраженная неврологическая симптоматика и гемолиз.

Как правило, в таких случаях на фоне неясных признаков врачам тяжело определить причину недомоганий. Поэтому для своевременной диагностики отравлений (особенно хронических) необходимо проводить анализ на содержание токсичных элементов в моче или крови человека.

Что такое тяжелые металлы

Существует много определений тяжелых металлов – в зависимости от атомной массы (т.е. значения массы атома, выраженного в атомных единицах массы), плотности и других критериев. Если вы помните, как устроена таблица Менделеева, то знаете, что элементы в ней расположены, помимо прочего, по возрастанию атомной массы. Т.е. чем ближе к концу таблицы, тем элемент тяжелее.

Согласно Большому энциклопедическому словарю, «тяжелые металлы – это цветные металлы с плотностью, большей, чем у железа: Pb (свинец), Cu (медь), Zn (цинк), Ni (никель), Cd (кадмий), Co (кобальт), Sb (сурьма), Sn (олово), Bi (висмут), Hg (ртуть)». Некоторые классификации также относят к тяжелым металлам мышьяк, про действие которого отдельно рассказывать не надо.

Где можно встретить тяжелые металлы

Металлы – это природные элементы, в огромном количестве содержащиеся в окружающей среде и в микроскопических дозах – в организме каждого из нас. Более того, в предусмотренных природой количествах они необходимы нашим организмам для нормального функционирования. Однако еще Парацельс (швейцарско-немецкий врач и алхимик 16 века) учил, что любое вещество – яд, все зависит лишь от дозы. В случае с тяжелыми металлами это выражение – стопроцентное попадание.

С тяжелыми металлами человек соприкасается много где: они присутствуют в воздухе, которым мы дышим, в воде, которую пьем и которой моемся, в почве и, соответственно, в нашей пище, в косметике и т.д. В этой статье мы хотим сфокусироваться именно на тяжелых металлах в продуктах питания.

Хотя необходимо избегать попадания тяжелых металлов в организм, это не всегда возможно. Европейское агентство по безопасности продуктов питания (EFSA) выявило максимальные дозы разных тяжелых металлов , которые допустимо потреблять ежедневно и еженедельно в течение всей жизни без особого риска для здоровья. Эти дозы указываются в миллиграммах вещества на килограмм веса вашего организма – такая доза будет допустима для потребления ежедневно или еженедельно.

Как тяжелые металлы попадают к нам в пищу

Выхлопные газы автомобилей и дымовые выбросы промышленных предприятий содержат высокие концентрации тяжелых металлов. Через эти выбросы металлы попадают в воду, почву и воздух, а оттуда – во флору и фауну, представителей которых мы потом едим. К тому же пища может загрязниться тяжелыми металлами в результате неправильного хранения и использования некачественной упаковки.

Про собственно тяжелые металлы

Мы не будем рассказывать про все тяжелые металлы, иначе эта статья станет слишком длинной, однако скажем про пару самых «популярных» тяжелых металлов, которые у всех на устах в качестве главных страшилок (которыми они, к сожалению, действительно являются).

Свинец

Свинец в окружающей среде повсюду: в воде, воздухе, горных породах. Однако для человека свинец – токсичный тяжелый металл, отравление которым может приводить, помимо прочего, к раку, патологиям костей и сильным нарушениям функции головного мозга, почек, кишечника и т.д.
Отравление свинцом – самое распространенное отравление тяжелым металлом. Человек соприкасается со свинцом, вдыхая автомобильные выхлопные газы, используя промышленную косметику и даже пищу. В бензин, на котором работает большинство автомобилей, для увеличения октанового числа добавляют тетраэтилсвинец – соединение свинца, для человека являющееся сильным ядом, отравление которым поражает мозг и нервную систему, ведет к психическим расстройствам вплоть до летального эффекта.

Ртуть

Ртуть и ее соединения очень токсичны для человека. Не зря мамы в детстве пугали нас разбитыми градусниками. Ртуть может быть природного и антропогенного происхождения. В природе она появляется в атмосфере из-за выветривания пород, содержащих ртуть, а ртуть антропогенного происхождения попадает в атмосферу в первую очередь при сжигании угля на электростанциях. Отравление ртутью, как и марганцем, оказывает направленное действие на нервную систему, нарушая ее нормальное функционирование.

Около половины от всего промышленно произведенного объема ртути попадает в Мировой океан. Это значит, что употребление в пищу любых морепродуктов и рыбы – потенциальный риск получить с пищей дозу ртути, причем значительную, т.к. концентрация этого вещества в тканях живых существ будет намного больше, чем в воде.
Однако ученые выяснили, что есть продукт, употребление которого помогает ртути, содержащейся в рыбе, не усваиваться при пищеварении, а выводиться из организма в «нетронутом» виде. Как ни удивительно, но этот продукт – клубника . А также арахисовое масло. И растительный белок из конопли. Здорово, правда?

Кадмий

Кадмий попадает в окружающую среду с отходами металлургической промышленности, мусороперерабатывающих заводов и с неправильной утилизацией никель-кадмиевых источников тока (аккумуляторов). Кадмий опасен для человека в силу своих канцерогенных свойств и способности накапливаться в организме. При избытке соединений кадмия в организме или при отравлением (например, при вдыхании паров оксида кадмия) поражается нервная система, нарушается фосфорно-кальциевый обмен, ферментные процессы и структура белковых молекул. Хроническое отравление приводит к анемии и разрушению костей.

Ванадий

Соединения ванадия используются в сталелитейной, фармацевтической, текстильной промышленности, вводятся в виде добавок в состав красителей, протрав, чернил и т. д. Отравление ванадием – неприятная вещь. Как и свинец, ванадий обладает политропным действием на организм, т.е. влияет не на какой-то один конкретный орган или систему, а на много систем сразу. В результате отравления ванадием в организме сбивается регуляция биохимических процессов, начинаются воспалительные процессы кожи и слизистых оболочек дыхательных путей, функциональные изменения органов кровообращения, ослабление иммунитета и т.д.

Кобальт

Кобальт используют для производства материалов, которые характеризуются жаростойкостью и для твердых инструментов – резцов и сверл. В медицине металл применяется для стерилизации препаратов и инструментов, а также в лучевой терапии.

Отравление кобальтом в основном встречается у работников стальной промышленности или в случаях загрязнения кобальтом еды или питья. Такое отравление может стать причиной сердечной недостаточности, гиперплазии (т.е. доброкачественного патологического увеличения) щитовидной железы и нарушения ее функций, а также нарушения обоняния, потери аппетита, дыхательной недостаточности и даже бронхиальной астмы.

Металлы. Металлы находятся в продуктах питания, консервах и посуде (алюминий, олово, медь) и являются причиной различных расстройств. Восемь химических элементов (ртуть, кадмий, свинец, мышьяк, медь, стронций, цинк, железо) объединенный комитет экспертов ФАО/ВОЗ по Codex Alimentarms включил в число компонентов, содержание которых контролируется при международной торговле продуктами питания.

Рассмотрим основные из них.

Ртуть. Ртуть - это металл, занимающий особое место в истории цивилизации. Добыча золота и величайшие технические достижения в электронике и ядерной технике были бы невозможны без применения этого замечательного металла. В последние десятилетия становится все более очевидным, что ртутная интоксикация значима не только для персонала, работающего в производственных условиях, но и для большинства городского населения. Не случайно, что хронические отравления парами ртути в конце XX в., по мнению медиков, перешли из разряда профессиональных заболеваний в болезнь популяции. Несмотря на огромные усилия, предпринимаемые для замены ртутьсодержащих изделий на более безопасные, полностью избавиться от ее применения человечеству вряд ли удастся. Поэтому у нас нет другой альтернативы, как научиться держать ртуть под контролем и знать, где может подстерегать «ртутная опасность».

Ртуть - рассеянный элемент. В атмосферу поступает как в ходе природных процессов (испарение со всей поверхности суши; возгонка ртути из соединений, находящихся на большой глубине в толще земной коры; вулканическая деятельность), так и за счет антропогенной деятельности (пи- рометаллургическое получение металла и все процессы, в которых используется ртуть; сжигание любого органического топлива; цветная металлургия; термические процессы с нерудными материалами и т.п.).

Техногенно рассеиваемая ртуть (пары, водорастворимые соли, органические соединения) отличается геохимической подвижностью по сравнению с природными (преимущественно сульфидными, труднорастворимыми, малолетучими) соединениями ртути и поэтому более опасна в экологическом отношен™.

Поступившие в атмосферу пары ртути сорбируются аэрозолями, почвой, вымываются атмосферными осадками, включаясь в круговорот в почве и воде (ионизируются, превращаются в соли, подвергаются метилированию, усваиваются растениями и животными). В процессе аэрогенной, водной, почвенной и пищевой миграции Hg° превращается в Hg2+.

Метилирование неорганической ртути в донных отложениях озер, рек и других водотоков, а также океанов - ключевой этап процесса миграции ртути по пищевым цепям водных экосистем. Были выделены почвенные микроорганизмы, способные метилировать ртуть.

Метилирование ртути микроорганизмами подчиняется следующим закономерностям:

  • преобладающий продукт биологического метилирования ртути при pH, близком к нейтральному, - метилртуть;
  • скорость метилирования при окислительных условиях выше, чем при анаэробных;
  • количество образуемой метилртути удваивается при десятикратном увеличении содержания неорганической ртути;
  • повышенная скорость роста микроорганизмов увеличивает метилирование ртути.

Ртуть относится к числу микроэлементов, постоянно присутствующих в теле человека, но не является эссенци- альным микроэлементом.

Ртуть отличается высокой токсичностью для любых форм жизни.

Токсическое действие ртути зависит от вида соединения: алкилртутные соединения токсичнее неорганических. Наиболее токсичны алкилртутные соединения с короткой цепью - метилртуть, этилртуть. Они больше накапливаются в организме, лучше растворяются в липидах, легче проникают через биологические мембраны. Чувствительность нервной системы к метил- и этилртути выше, чем к другим соединениям.

В организм человека ртуть может попадать с продуктами питания растительного и животного происхождения, продуктами моря, атмосферным воздухом и водой. В производственных условиях основное значение имеет поступление ртути в организм через дыхательные пути в виде паров или пыли. Пары ртути полностью задерживаются в дыхательных путях, если концентрация их в воздухе не превышает 0,25 мг/м3.

Резорбция ртути в пищеварительном тракте зависит от типа соединения: резорбция неорганических соединений составляет 2-15%, фенилртути - 50-80, метилртути - 90- 95%. Метилртуть стабильна в организме, другие алкилртут- ные соединения быстрее трасформируются в неорганические.

При всех путях поступления ртуть накапливается преимущественно в почках, селезенке и печени. Органические соединения, хорошо связываясь с белками, легко проникают через гематоэнцефалический и плацентарный барьеры и накапливаются в головном мозге, в том числе и плода, где их концентрация в 1,5-2 раза больше, чем у матери. В мозговой ткани метилртути содержится в 5-6 раз больше, чем в крови.

Поступление ртути в организм отрицательно влияет на обмен пищевых веществ: неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена; органические соединения - обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена.

Выведение ртути из организма осуществляется всеми железами желудочно-кишечного тракта, почками, потовыми и молочными железами, легкими. В грудном молоке обычно содержится около 5% от ее концентрации в крови. Неорганические соединения выделяются преимущественно с мочой (период полувыведения из организма - 40 сут), а органические соединения на 90% выделяются с желчью и калом (период полувыведения из организма - 76 сут). Из организма новорожденных ртуть выделяется медленнее, чем у взрослых. Она выводится из организма неравномерно. По мере выделения ртуть мобилизуется из депо. По-видимому, различные стрессовые ситуации стимулируют мобилизацию ртути, с чем связывают периодические обострения при хроническом меркуриализме.

Ртуть накапливается преимущественно в ядре клетки, остальные субклеточные структуры по содержанию ртути располагаются в следующем порядке: микросомы, цитоплазма, митохондрии. Повреждающее действие ртути распространяется на все субклеточные структуры. В основе механизма действия ртути лежит блокада биологически активных групп белковой молекулы (сульфгидрильных, аминных, карбоксильных и др.) и низкомолекулярных соединений с образованием обратимых комплексов, характеризующихся нуклеофильными лигандами. Установлено включение ртути (Hg2+) в молекулу транспортной РНК, играющей центральную роль в биосинтезе белков.

В начальные сроки воздействия малых концентраций ртути имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Наблюдается возрастание моноаминооксидазной активности митохондриальной фракции печени. Установлено стимулирующее действие неорганических соединений ртути на развитие атеросклероза, но эта связь нерезко выражена.

Пары ртути проявляют нейротоксичность, от чего особенно страдают высшие отделы нервной системы. Вначале возбудимость коры больших полушарий повышается, затем возникает инертность корковых процессов. В дальнейшем развивается запредельное торможение.

Неорганические соединения ртути обладают нефроток- сичностью. Есть сведения о гонадотоксическом, эмбриоток- сическом и тератогенном действии соединений ртути.

Основные проявления хронического воздействия малых концентраций ртути следующие: повышенная нервозность, ослабление памяти, депрессивное состояние, парестезии на конечностях, мышечная слабость, эмоциональная лабильность, нарушение координации движений, симптомы поражения почек. К данной симптоматике могут присоединяться признаки поражения сердечно-сосудистой системы - аномальное повышение артериального давления, тахикардия, изменение электрической активности (ЭКГ). Все эти явления обусловлены воздействием ртути на энзиматическую активность в клетках, увеличением концентрации внутриклеточного кальция, ингибированием синтеза ДНК и РНК, нарушением цитоархитектоники микротрубочек, блокированием нейрорецепторов, ПОЛ в мембранах клеток мозга.

Болезнь Минамата - ртутная интоксикация алиментарного происхождения, обусловленная употреблением в пищу рыбы и других гидробионтов, выловленных из водоемов, загрязненн ых ртутью (Япония) (см. гл. 9).

Во многих странах мира отмечена сходная клиническая картина алиментарных ртутных интоксикаций, обусловленных употреблением протравленного ртутьорганическими соединениями посевного зерна, хлебобулочных изделий из него, а также мяса скота, получавшего это зерно с кормом. Латентный период данных заболеваний в зависимости от суточной дозы метилртути, поступившей в организм человека, составлял от 1-2 дней до нескольких недель.

Есть сообщения о защитном воздействии цинка и селена при поступлении в организм ртути. Защитное действие селена (в том числе содержащегося в рыбных продуктах, например в тунце) усматривают в деметилировании ртути с образованием нетоксичного селенортутного комплекса. Токсичность неорганических соединений ртути снижают аскорбиновая кислота и медь при их повышенном поступлении в организм, а органических соединений - протеины, цистеин, токоферолы. Пиридоксин, особенно при избыточном введении в организм, усиливает токсичность ртути.

При изучении болезни Минамата установлено, что под- пороговая суточная доза метилртути (по ртути) равняется 4 мкг/кг массы тела, т.е. около 0,3 мг для взрослого человека. Комитет экспертов ФАО/ВОЗ по пищевым добавкам, основываясь на расчетах с применением коэффициента безопасности 10, пришел к выводу, что поступление ртути в организм взрослого человека не должно превышать 0,3 мг в неделю и 0,05 мг в сутки, из которых не более 0,03 мг может составлять метилртуть. По данным ВОЗ, признаки интоксикации метилртутью у наиболее чувствительных к ней людей появляются тогда, когда концентрация ртути в крови превышает 150 мкг/л. Максимально безопасным для взрослого человека уровнем ртути в крови считается 100 мкг/л. Фоновое содержание ртути в волосах - 10-20 мкг/г, безопасным уровнем ртути в волосах считают 30-40 мкг/г. Содержание ртути в моче больше 10 мкг/сут свидетельствует о возможной опасности хронического отравления, а 50 мкг/сут, при наличии соответствующей симптоматики, служит подтверждением диагноза микромеркуриализма.

Медь. Медь - микроэлемент, широко распространенный в природе. Средние концентрации меди в воде рек и озер составляют 7 мкг/л, в океанах - 0,9 мкг/л. Важная роль в процессе миграции меди в гидросфере принадлежит гидро- бионтам; некоторые виды планктона концентрируют медь в 90 тыс. раз выше. Содержание меди в почвах составляет в среднем 15-20 мг/кг.

Биологическая роль меди - она входит в состав гематокупреина и других порфиринов животного мира, металло- ферментов, например цитохромоксидазы, лизилоксидазы. Последняя осуществляет формирование поперечных сшивок между полипептидными цепями коллагена и эластина. Недостаток меди приводит к образованию дефектного коллагена, что увеличивает вероятность разрыва стенок артерий. Дефицит меди может привести к анемии, незначительному замедлению физического развития детей, увеличению частоты сердечно-сосудистых заболеваний.

Суточная потребность взрослого человека в меди - 2-2,5 мг, т.е. 35-40 мкг/кг массы тела; при напряженной мышечной деятельности поступление меди не может быть ниже 4-5 мг, для детей - 80 мкг/кг.

В обычных условиях человек получает в сутки в среднем 2-5 мг меди, главным образом с пищей. Поступление через легкие незначительно.

При поступлении с пищей в кишечнике всасывается около 30% содержащейся меди. При повышенном поступлении меди в организм резорбция ее снижается, что уменьшает опасность интоксикации. Медь малотоксична. В зависимости от ее соединений ЛД50 для теплокровных животных варьирует от 140 до 200 мг/кг массы тела. У человека однократная доза 10-20 мг/кг массы тела вызывает тошноту, рвоту и другие симптомы интоксикации. Известны случаи, когда приготовление или подогревание кофе или чая в медной посуде вызывало у людей желудочно-кишечные расстройства.

Медь в количестве 5-15 мг/кг может придать металлический привкус воде, напиткам, пище. Повышенное содержание меди может обусловить уменьшение срока хранения пищевых жиров и жиросодержащих продуктов (они прогоркают, изменяют цвет). Медь катализирует окисление не только ненасыщенных жиров, но и аскорбиновой кислоты, она снижает ее количество в овощах, фруктах и соответствующих соках.

Механизм токсического действия меди связан с блокадой сульфгидрильных групп белков, в том числе ферментов.

Высокая гепатотоксичность меди и ее соединений связана с ее локализацией в лизосомах гепатоцитов и со способностью повышать проницаемость мембраны митохондрий. Интоксикации соединениями меди могут сопутствовать аутоиммунные реакции и нарушение метаболизма моноаминов. Острая интоксикация сопровождается выраженным гемолизом эритроцитов. При хронической интоксикации медью и ее солями возможны функциональные расстройства нервной системы (обнаружено сродство меди к симпатической нервной системе), печени и почек, изъязвление и перфорация носовой перегородки.

Эксперты ФАО пришли к выводу, что суточное потребление меди может составлять не более 0,5 мг/кг массы тела (до 30 мг в рационе) при нормальном содержании в пище молибдена и цинка - физиологических антагонистов меди.

Стронций. По химическим свойствам стронций сходен с кальцием и барием. По интенсивности поглощения стоит на четвертом месте после меди, цинка и бария.

Среднее содержание стронция в почвах - 0,035%. Нормой для растений считают концентрацию стронция в почве около 600 мг/кг, избыточное содержание - от 600 до 1000 мг/кг. При таких условиях становится реальной опасность возникновения уровской болезни. Наиболее богаты стронцием семейства зонтичных (0,044%), Виноградовых (0,037%); меньше всего его в злаковых (0,011%) и пасленовых (0,009%).

Стронций применяется в металлургии, в электровакуумной технике, как сплав со свинцом и оловом - в производстве аккумуляторов. Гидроксид стронция употребляют для изготовления стронциевых смазок, для выделения сахара из патоки; хлорид стронция - в холодильной промышленности, косметике и медицине; карбонат стронция входит в состав глазурей, стойких к атмосферным воздействиям.

Стронций содержится во всех тканях и органах человека, входит в состав скелета высших и низших животных. Стронций оказывает влияние на процессы костеобразования, активность ряда ферментов - каталазы, карбоангидразы, щелочной фосфатазы. На изолированные органы стронций действует как кальций, полностью заменяя его. Ионы Sr2+ настолько близки по характеристикам к Са2+, что включаются в обмен вместе с ним, но, обладая большей скоростью обмена и значительно отличаясь по размеру, они постепенно нарушают нормальную кальцификацию скелета.

Наиболее характерное проявление токсического действия стронция - уровская болезнь, клинические признаки которой - повышенная ломкость и уродливость костей. Предполагают, что рахитогенное действие стронция связано с блокированием биосинтеза одного из важных метаболитов витамина D и избыточным отложением фосфора в костях. Имеются указания на зобогенный эффект стронция, его действие как нервного и мышечного яда, способность хлорида стронция стимулировать продукцию тромбоксана В(2) тромбоцитами человека и оказывать местно-анестезирующее действие.

Цинк. Цинк относится к группе рассеянных элементов. Цинк - один из наиболее распространенных токсических компонентов крупномасштабного загрязнения Мирового океана, в настоящее время его содержание в поверхностном слое морской воды достигает 10-20 мкг/л. Среднее содержание цинка в почвах мира - 5-10~3%.

Цинк - компонент сплавов с цветными металлами (латунь, нейзильбер); применяется для защиты стальных и железных изделий от коррозии; служит в качестве наполнителя для резин; используется в производстве стекла, керамики, спичек, целлулоида, косметических средств. Соединения цинка служат пигментами для красок, компонентами для зубных цементов.

Антропогенными источниками поступления цинка в окружающую среду являются: выброс его в атмосферу при высокотемпературных технологических процессах (основной источник); шламы сточных вод и сами сточные воды химического, деревообрабатывающего, текстильного, бумажного, цементного производств, а также рудников, горно- обогатительных и плавильных заводов, металлургических комбинатов. Источник поступления цинка в воду - вымывание его горячей водой из оцинкованных водопроводных труб до 1,2-2,9 мг с поверхности 1 дм2 в сутки.

Содержание цинка в теле взрослого человека составляет 1-2,5 г, 30% депонируется в костях, 60% - в мышцах. Цинк всасывается в двенадцатиперстной кишке и верхнем отделе тонкой кишки. В печени часть цинка депонируется, часть трансформируется в меташюбелковые комплексы, в частности металлоэнзимы. Транспортируется цинк кровью в виде комплексов с белками, лишь незначительное количество содержится в ионной форме. Содержание цинка в цельной крови - 700-800 мкг%; из этого количества 75-85% находится в эритроцитах. С возрастом человека содержание цинка в теле нарастает. Выводится в основном через кишечник (10 мг/сут), с мочой (0,3-0,6 мг/сут), потом (в жаркую погоду до 2-3 мг/сут); может выводиться также с молоком.

В основе многих проявлений цинковой интоксикации лежат конкурентные отношения цинка с рядом металлов.

Избыточное поступление цинка в организм животных сопровождалось снижением уровня кальция в крови и в костях, одновременно нарушалось усвоение фосфора, в результате развивался остеопороз.

Цинк обладает кумулятивным токсическим эффектом даже при незначительном его содержании в воздухе, может представлять мутагенную и онкогенную опасность. Среди шведских горняков, добывающих цинк, наблюдается повышенная смертность от рака. Гонадотоксическое действие цинка проявляется снижением подвижности сперматозоидов и их способности проникать в яйцеклетку.

Железо. Железо - один из наиболее распространенных элементов земной коры (4,65% по массе); присутствует также в природных водах, где среднее содержание его колеблется в интервале 0,01-26,0 мг/л. Важный фактор миграции и перераспределения железа - биомасса Земли. Многие составные части пищевой цепи интенсивно накапливают железо. Активно аккумулирует его водная флора, причем интенсивность накопления зависит от времени года (концентрация возрастает к сентябрю). Интенсивная деятельность железобактерий приводит к тому, что железо в водоемах не рассеивается, а быстро окисляется и концентрируется в донных отложениях. Животные организмы аккумулируют железо в меньших количествах, чем растения.

Антропогенные источники поступления железа в окружающую среду: локальная техногенная аномалия - зона металлургических комбинатов, в твердых выбросах которых железо содержится в количестве от 22 ООО до 31 ООО мг/кг, что сопровождается избыточным его поступлением в почву и растения. Большую опасность представляют сточные воды и шламы металлургического, химического, машиностроительного, нефтехимического, химико-фармацевтического, лакокрасочного, текстильного производств.

В организме здорового взрослого человека содержится 4-5 г железа, ежедневные его потери составляют 0,5-1,3 мг. Суточная потребность в железе взрослого человека - 11-30 мг. Она значительно возрастает при беременности, кормлении грудью, при интенсивной мышечной деятельности. В основных пищевых продуктах содержится следующее количество железа (мкг/100 мг съедобной части): хлеб- 4000, мясо - 3000, рыба - 1000, картофель - 900, овощи - 700, фрукты - 600, молоко - 70; в среднем суточный рацион - около 28 мг.

Метаболизм железа определяется двумя принципиальными моментами: процессом всасывания железа и запасом железа в организме.

Всосавшееся в желудочно-кишечном тракте восстановленное железо транспортируется кровью в виде ферритина, где оно связано с Р,-глобулиновой фракцией белков.

Основная масса металла выводится с калом, меньше - с мочой и потом, у кормящих матерей может выводиться с молоком.

Развитие дефицита железа в организме связано с дисбалансом других микроэлементов:

  • недостаток фтора приводит к снижению утилизации железа и меди;
  • у жителей высокогорных районов увеличенный метаболизм железа сопровождается значительным накоплением магния в эритроцитах;
  • дефицит цинка приводит к развитию тяжелого симпто- мокомплекса железодефицитной анемии с гепатомегалией, карликовостью, половым недоразвитием и нарушением волосяного покрова (болезнь Прасада);
  • важное значение в возникновении железодефицитных состояний имеет недостаток меди, марганца, кобальта.

Источником избыточного поступления железа в организм человека могут стать пищевые продукты, длительно хранящиеся в луженых молочных флягах. Есть данные об отсутствии железодефицитных анемий у женщин, использующих для приготовления пищи железную посуду. В то же время у племени банту в связи с высоким содержанием железа в пищевом рационе отмечены сидероз печени и селезенки и связанные с ними случаи остеопороза.

Соединения Fe2+ обладают общим токсическим действием: у крыс, кроликов при поступлении в желудок наблюдались параличи, смерть в судорогах (причем хлориды токсичнее сульфатов). Fe2+ активно участвует в реакциях с радикалами гидроперекисей липидов:

  • небольшое содержание Fe2+ инициирует ПОЛ в митохондриях;
  • возрастание содержания Fe2+ приводит к разрушению гидроперекисей липидов.

Соединения Fe3+ менее ядовиты, но действуют прижига- юще на пищеварительный тракт и вызывают рвоту.

Железо обладает сенсибилизирующим эффектом по клеточно-опосредованному типу, не вызывает реакций немедленного типа. Соединения железа избирательно действуют на различные звенья иммунной системы: стимулируют Т-системы и снижают показатели состояния неспецифической резистентности и общего пула иммуноглобулинов.

Высокое потребление с пищей железа предрасполагает к сердечно-сосудистым заболеваниям. Существует точка зрения, что циклические менструации, связанные с кровопоте- рей, влекут за собой потерю железа, что резко снижает риск сердечно-сосудистой патологии у женщин в предклимакте- рическом периоде. В начале менопаузы уровни запасенного железа быстро возрастают, и вероятность сердечно-сосудистых заболеваний возрастает.

Долгое время бытовало мнение о необходимости обогащения продуктов питания железом с целью борьбы с железодефицитными состояниями. Однако в последние годы появились сомнения в отношении этого из-за того, что железо может быть причиной ряда заболеваний.

Железо более опасно при воздействии per os, по сравнению с его действием на кожу. Аллергенная активность содержащих железо вод возрастает с увеличением температуры воды с 20 до 38 °С. При накожном воздействии сенсибилизирующий эффект наиболее выражен у Fe3+. Концентрация железа в воде на уровне 2,0-5,0 мг/л близка к порогу аллергенного действия на человека.

Алюминий. Этот металл широко применяется в машино- и самолетостроении, для приготовления упаковочных материалов, в медицине как антоцид при лечении гастритов, язв и др. Широко распространен в окружающей среде. Для организма - чужеродный элемент, так как в выполнении каких-либо биологических функций у млекопитающих не участвует.

Уже указывалось в гл. 8, что алюминий содержится в повышенных количествах в некоторых растениях и получает большую растворимость и подвижность в кислых почвах, т.е. при выпадении кислотных осадков.

Среднее потребление алюминия человеком составляет 30-50 мг в день. Это количество складывается из содержания его в продуктах питания, питьевой воде и лекарственных препаратах. Четверть от этого количества приходится на воду.

Основные источники алюминия - алюминиевая посуда и упаковочный материал, имеющий покрытие из алюминиевой фольги. Кислые консервированные продукты питания и напитки (маринованные огурцы, кока-кола) могут содержать сами по себе небольшие количества алюминия. Он поступает также с некоторыми продуктами питания, например с морковью, которая может содержать до 400 мг/кг этого металла. Другим источником алюминия является чайный лист. Эпидемиологические исследования, проведенные канадским Министерством здравоохранения и социального обеспечения в 1993 г., показали, что пациенты с болезнью Альцгеймера в среднем употребляли чай в 2,5 раза чаще других людей. Некоторые традиционные, часто употребляемые лекарственные соединения (антациды, забуференный аспирин) также содержат в своем составе алюминий.

Известно, что алюминий резорбируется в относительно небольших количествах в ЖКТ - около 1%. После резорбции комплексируется преимущественно с трансферрином и распределяется по организму: в легких может накапливаться до 50 мг/кг, в мышцах и костях - около 10 мг/кг, в мозгу - около 2 мг/кг и в сыворотке крови - около 10 мкг/л. Удаляется из организма почти исключительно через почки.

Установлено, что алюминий способен замедлять образование костной ткани, что в дальнейшем может сопровождаться ее резорбцией. Кроме того, этот трехвалентный металл тормозит в ЖКТ всасывание фтора, кальция, железа и неорганического фосфата. Алюминий способен влиять на моторику ЖКТ путем торможения индуцированного аце- тилхолином сокращения гладких мышц кишечной стенки. Эти явления отмечаются часто у пациентов, принимающих алюминийсодержащие антацидные препараты.

С накоплением в организме алюминия связывают возникновение болезни Альцгеймера - медленно прогрессирующего дегенеративного, неврологического заболевания. Накопление в тканях мозга алюминия сопровождается быстро- протекающими дегенеративными изменениями в подкорковых ганглиях, вторичной гидроцефалией, деструкцией гиппокампа, ядер переднего мозга. Биохимически для болезни Альцгеймера характерно угнетение холинэргических нейротрансмиттеров, в частности ацетилхолинэстеразы и других энзимов, обеспечивающих холинэргические механизмы.

При данном заболевании алюминий связывается и с ядерным хроматином, в частности с ДНК, что ведет к глубокому нарушению механизмов транскрипции в нейронах.

Алюминий способен концентрироваться в ядрах нейронов, в их цитоплазме формируются характерные для болезни Альцгеймера парные спиралевидные нейрофиламенты, обнаруживаемые при электронной микроскопии. Нейро- фибриллярный аппарат пораженных нейронов подвергается тяжелым необратимым изменениям, что в свою очередь влечет за собой глубокие нарушения аксонального транспорта, определенную дисгармонию рецепторной активности и характерную дегенерацию дендритов. И хотя довольно точно доказано отложение алюминия в ЦНС, трактовка болезни Альцгеймера только как злокачественной формы ней- роалюминоза неоднозначна, так как в патогенезе этого заболевания принимают участие и другие факторы (иммуно- цитохимические, генетические).